
High-Speed One-Shot Detection and Recognition
of Low-Resolution Text Trained on Synthetic Data

Le Duy Huynh, Mihhail Dorosenko, and Bogdan Khomutenko
MCQ-Scan, Lille, France

Emails: {ld.huynh, m.dorosenko, b.khomutenko}@mcq-scan.com

Abstract—In this study, we address the challenge of text
detection and recognition in low-resolution images. Addressing
the dual constraints of limited training data and the necessity
for real-time processing, we adopt a twofold strategy. Firstly,
we introduce a pipeline for the generation of synthetic datasets
that requires minimal manual annotation and is specifically
designed for the context of low-resolution real-life text images.
Secondly, we employ a streamlined neural network architecture
based on the U-Net model, which concurrently executes text
detection and recognition across multiple contextual layers. Our
method demonstrates superior performance, achieving real-time
processing speeds exceeding 120 fps, and is accurate even in
challenging conditions where text characters are as small as
five pixels in width. Our findings suggest that both the synthetic
dataset generation pipeline and the neural network model are
highly adaptable and can be easily modified for a broad range
of applications.

I. INTRODUCTION

The task of scene text detection and recognition is chal-
lenging, due to the variability in environmental factors such
as illumination levels, contrast, blurring, geometric distor-
tions, and variation in text content. These challenges are
particularly relevant to our system, wherein our autonomous
inventory robot captures images of a large section of the store
with multiple price tags, therefore, each price tag is in low
resolution. These price tags are often captured in sub-optimal
conditions such as low light or odd angles. One example of
such a scene can be seen in Figure 1. Existing Optical Char-
acter Recognition (OCR) methodologies, like those proposed
by [1], [2], and [3], often rely on two separate neural networks
that do text detection and recognition separately. While these
methods are claimed to be effective in terms of accuracy,
their two-stage approach incurs computational overhead due
to the transfer of data between stages, which impedes their
real-time processing capabilities. Furthermore, these methods
are not optimized for recognizing very low-resolution text
and exhibit suboptimal performance on our data; thus, they
cannot be directly applied without further fine-tuning. To the
best of our knowledge, there is no dedicated dataset for low-
resolution text. This leads to the challenge of collecting a
suitable OCR dataset.

This paper introduces our approach designed to overcome
these limitations. Our key contributions are twofold: First,

This research has been supported by BPI France, the French government,
the Eurostars programme, and the European Union

Fig. 1. Example of a scene captured by our inventory robot (left). An
example price tag crop (top right). Zooming in on the price tag (middle right)
shows that the characters are in extremely low resolution, for example, the
character I in “INS” is represented by about 5 pixels. Our system was trained
to ignore certain fields in the price tag (e.g. “Unit=Piece"). As demonstrated
in the bottom right crops, it recognizes correctly all the characters in the
item description, but it still makes some errors in the very low-resolution
text, (e.g., give an additional “2” in the barcode).

a novel synthetic dataset creation process, detailed in Sec-
tion III-A, with annotations at multiple contextual levels
(line, word, and characters), tailored for representing low-
resolution text, where some characters’ width is as low as
five pixels. Second, the application of a streamlined, single-
stage deep neural network that performs at the same time
text localization and recognition, elaborated in Section III-B,
specifically aims at achieving superior OCR accuracy on low-
resolution inputs and can run at 120fps. We invite readers to
Section IV for comprehensive experimental results.

II. RELATED WORKS

A. Scene text detection and recognition
The challenges of scene text reading have attracted increas-

ing attention in the computer vision community. A majority
of the approaches are based on a two-stage process involv-
ing separate detection and recognition tasks, each currently
dominated by deep learning approaches. In this methodology,
the detection task identifies text regions, typically a text

line or a word, and the recognition task is subsequently
performed on these regions. This bifurcates the research into
two main areas: text localization and text recognition. Early
text localization methods relied on engineered features and
used sliding windows, or connected components, as seen
in Huynh et al. [4]. More recent approaches such as Zhou
et al. [5] and Quin et al. [6] have predominantly utilized
deep detection models. On the task of text recognition,
the works of Zhao et al. [7], Wang et al. [8], Bautista et
al. [9], and Liao et al. [10] have demonstrated promising
results in benchmark tests. In reviewing current approaches,
it’s important to acknowledge industry-standard OCR tools
such as PaddleOCR [1], and Tesseract [2]. These tools have
set benchmarks in text recognition accuracy and processing
efficiency, representing key reference points for any new
developments in the OCR field. They demonstrate that full
image to text solutions can be achieved by combining a
detection module with a recognition module.

However, despite its widespread adoption, this two-stage
approach presents some limitations. Firstly, this approach
prevents training both stages simultaneously, which poten-
tially prevents the recognition stage from leveraging visual
information available within the broader image context. Sec-
ondly, the recognition stage often has constraints on the input
format, which requires cropping the text region and executing
certain preprocessing steps, thereby introducing unnecessary
overhead.

End-to-end trainable methods have been investigated to
overcome the first limitation by integrating two stages
through a Region of Interest (RoI) pooling operation. An
early example of this approach is presented in Bušta et
al. [11], who linked their YOLOv2 detection network with a
recognition network via bilinear interpolation, enabling joint
training of both networks. A similar paradigm is employed
by Liao et al. [10], and Liu et al. [12], which incorporate
RoI pooling before the second stage that utilizes a recurrent
neural network. Although these methods benefit from end-
to-end training, they are not truly single-stage, and the inter-
stage pooling layer introduces unnecessary computational
overhead. In light of this, we propose a genuinely single-stage
model capable of performing both detection and recognition
tasks within a single forward pass.

It should be acknowledged that the aforementioned
methodologies do not address issues of extremely low reso-
lution text, potentially attributable to a scarcity of datasets in
this area of study. Gilbey et al. [13] discuss the challenges as-
sociated with low-resolution text within the scope of scanned
documents, which is not directly applicable to the scenarios
under consideration in our research.

B. Existing dataset
To develop our method, access to a representative training

dataset is crucial, particularly one that encapsulates the chal-
lenges of low-resolution text that we face. There are publicly
available datasets such as CORD [14], and ICDAR2019 [15]
which provide insights into scanned documents. Although
they represent certain challenges, particularly low-resolution,

Fig. 2. First column: the rendered string; second column: alpha blend text
string on the target patch; third column: after blurring, chromatic distortion,
and JPEG compression. The final rendered pricetag is in the first row of
Figure 3

and corrupted characters due to printing or scanning errors,
these datasets lack elements of scene text such as varied
lighting and backgrounds. Large-scale real-life datasets like
COCO-Text [16] and TextOCR [17] offer diverse texts but
differ significantly from low-resolution price tags. These
datasets offer a foundation but are not ideal for OCR of low-
resolution text.

Synthetic datasets, such as those introduced by Gupta et
al. [18] and Jaderberg et al. [19], contribute to advancements
in text localization and recognition within natural scenes.
Nevertheless, they may not capture the full spectrum of chal-
lenges present in low-resolution text, including unique tex-
tures and lighting conditions. While these synthetic datasets
cannot be directly applied to our specific problem, they
suggest that a carefully constructed synthetic dataset could
provide substantial generalization capabilities.

III. METHODOLOGY

A. Synthetic dataset for low-resolution text
Creating a robust model for text detection in low-resolution

images requires a specialized dataset, particularly when ex-
isting datasets diverge significantly from our target domain.
To address this, we’ve synthesized a dataset tailored to our
application’s specific needs, focusing on text fields in price
tags captured by a retail inventory robot. Some examples are
shown in Figure 3.

1) Preparations: We selected a set of 25 price tag crops
that featured legible text among photos taken by our robot
in a field condition. We annotated the position, size, scale,
and color of the original text and then performed inpainting
over the textual content. This set serves as our template.
In addition to the template, we compiled a set of product
metadata from the same store chains, which contains infor-
mation that would appear on the price tags such as product
name and short description, price, and internal reference.
For missing information, such as barcodes, we dynamically
generated plausible strings during the rendering process. To
improve the accuracy of our application, we collected a set
of free fonts that closely matched the font style used in the
target stores and created variations of these fonts to mimic
some common printing defects we observed.

2) Rendering and Composition: The rendering and com-
posing of a target image for a text detection dataset involves
several steps to simulate real-world variations and distortions
that can occur in images. The first step in the process is to
introduce variability in the text that will be rendered onto
the target image, which in this case is a price tag. This

Original Template Rendered

Fig. 3. Examples of synthetic image and the characters level annotations
of synthetic text. In this example, we only place synthetic texts in 3 fields:
product description, barcode, and internal code.

variability is achieved by randomly choosing different target
templates, text strings, fonts, sizes, colors, and transforma-
tions. Transformations include blurring, which simulates out-
of-focus images or motion blur, JPEG compression artifacts;
and chromatic distortion. A level of alpha blending to blend
the text patch onto the template is also randomly chosen.
Additionally, the text may be stretched or squeezed.

We split the randomly selected strings into multiple lines
based on the size of the target fields and the number of
possible lines. Each text string is rendered at twice the se-
lected font size, followed by a down-sampling operation using
bicubic interpolation. If this procedure is not performed,
characters in rendered text will display the same pixelization
pattern. For instance, as illustrated in the first panel of
the third row in Figure 2, the pair of digit ‘1’s, despite
sharing the same font, display several pixel-level disparities.
Subsequently, each text is alpha blended onto a cropped
section of the template, matching the text field dimensions,
to effectuate a very similar text overlay on the price tag, as
demonstrated in the second column of Figure 2. To emulate
additional complexities encountered with low-resolution text,
we apply the previously mentioned augmentations within this
segment, resulting in challenging datasets comparable to real-
world scenarios, particularly for very low-resolution text, as
illustrated in the last column of Figure 2. Post-transformation,
the segment is cropped to the text line’s extent and then alpha-
blended into the original price tag template. Depending on the
specific use case, we can generate bounding box annotations
for each line of text as well as for individual characters. After
all the text fields have been added and blended into the price
tag, a final augmentation is applied to the price tag as a whole
to transform the text and the price tag coherently to maintain
realism in the dataset.

B. A fast one-stage detection and recognition
In this section, we present the design of our Convolutional

Neural Network that is adapted for the inference latency
requirement of a real-time application on low-resolution text.
We utilize a compact neural network designed for speed,
precision, and the capability to be trained end-to-end. The

segmentation results generated by this network are postpro-
cessed using straightforward yet efficient techniques to yield
the final string.

1) Architecture: Our system, depicted in Figure 4, is based
on a U-Net architecture [20]. It performs both detection
and recognition tasks for low-resolution text. To improve
performance on small texts, including characters as narrow as
five pixels, we choose to set the prediction resolution higher
than that typically used by object detectors. We leverage an
ImageNet pretrained backbone for hierarchical feature extrac-
tion. The decoder part of the network merges these features
through upsampling and convolutional processes, blending
detailed spatial information with high-level semantics. We
conclude the decoding at half the original image resolution,
which is a key factor in speeding up inference while main-
taining precise text detection and recognition capabilities.

2) Multiple contextual level prediction: Given ℂ, the set
of characters that we aim to detect, we trained a U-Net model
to generate |ℂ|+1 prediction maps. In which |ℂ| outputs are
designed to facilitate both the localization and classification
of individual characters. It is important to note that the white
space is included in the characters set ℂ, therefore simplifying
the post-processing task by eliminating the need for word
segmentation. The last map is utilized for text line prediction,
which is used in the post-processing to group characters into
lines.

We construct the ground truth data for character and line
segmentation based on the bounding boxes of individual
characters. Within each character’s bounding box, we place a
Gaussian blob centered on the box’s center. The ground truth
for the line segmentation would be a 2D distribution that is
uniform in the 𝑥 direction and is a Gaussian distribution in
the 𝑦 direction. The standard deviations of these Gaussian
blobs are determined by the bounding boxes dimensions: in
our test, 𝜎𝑥, and 𝜎𝑦 are set to 30% of the box’s width and
height, respectively. We then crop the Gaussian blob using
the limits of the text bounding box. These are demonstrated in
Figure 4. By adjusting the spread of the Gaussian distribution
relative to the character size, we encourage the model to
focus on the center of the target box and reduce the overlap
between adjacent blobs of the same class, thereby improving
the model’s ability to distinguish closely situated characters
and lines, which is challenging for characters with slender
profiles, e.g. “I” or “1”.

3) Training loss: In our case, the target distribution is
highly imbalanced towards predicting nothing. Utilizing stan-
dard loss functions such as binary cross-entropy or mean
squared error resulted in the model’s predictions converging
rapidly to zero. To address this issue, we employ a two-
term loss function that is specifically designed to handle the
imbalance and to focus the learning process on the relevant
regions of the output space.

The first term of our loss function is a weighted mean
squared error term 𝑤𝑚 described in (1), which prioritizes
regions containing text. This term focuses the model on
classifying characters and lines effectively.

Fig. 4. The overall pipeline of our system. At its core, a U-Net model extracts two contextual layers: individual characters and entire text lines. The
models not only localize characters but also classifies them. These characters are then concatenated to form the complete text string with the help of
text line prediction. In this example, we construct the U-Net with only 4 feature maps from the backbone. The model is trained on the characters set
ℂ = {“1”, “2”, “a”, “b”, “c”, “d”, “ ” (white space)}.

𝑤𝑚 = 1
𝐻𝑊 |ℂ|

∑𝐻
𝑖=0

∑𝑊
𝑗=0

∑

|ℂ|
𝑐=0

(

𝑦∗𝑖𝑗𝑐 − 𝑦𝑖𝑗𝑐
)2 (𝐾

|ℂ|𝑚𝑖𝑗 + 𝑦∗𝑖𝑗𝑐 + 𝜇
)

(1)

In this expression, 𝐻 and 𝑊 are the height and width of
the output; 𝑦∗ is the ground truth; 𝑦 is the network output
(that has |ℂ|+ 1 channels); 𝐾 is a coefficient (we used 𝐾 =
1.3); 𝜇 is the average value of 𝑦∗ along all dimensions. 𝑚 is
the mask that selects the area of interest around letters. It is a
dilated version of the max value of 𝑦 along the channel axis
𝑚𝑖𝑗 = max𝑖𝑗𝑘×𝑘max𝑐 𝑦∗𝑖𝑗𝑐 ; 𝑘 is the window size of the max
operator used for dilation. We use 𝜇, 𝑦∗, and 𝑚 weights for
the squared error at each pixel. They give a certain weight
to three distinct areas to balance their presence in training
data: pixels outside the text (most common class), channels
for wrong characters in pixels inside the text area, and the
correct channels at the correct pixel (the least common class).

The second term of our loss function is a regularization
term, 𝑟𝑒𝑔, which aims to penalize false positives and is
defined for one image as follows:

𝑟𝑒𝑔 = 1
𝐻𝑊 |ℂ|

|ℂ|
∑

𝑐=0
ReLU

(𝐻
∑

𝑖=0

𝑊
∑

𝑗=0
(𝑦𝑖𝑗𝑐 − �̂�)

)𝛾

(2)

Here, 𝑦 represents the model’s predictions. The term 𝑦𝑖𝑗𝑐
represents the prediction for class 𝑐 in position 𝑖𝑗, and �̂� is
the target value for the predictions, which was set at 0.3 in
our test. The exponent 𝛾 is a focusing parameter that adjusts
the sensitivity of the loss function. The higher the prediction
deviates from the target value, the stronger the penalization.
The ReLU (rectified linear unit) function ensures that the
regularization term only penalizes predictions that exceed the
target mean, thereby focusing on reducing false positives.

In the course of our experiments, the final loss function
was constituted by an aggregation of these two terms with
the regularization term scaled by a factor of 𝛼. The coefficient
𝛼 was empirically set to 10−4.

Loss = 𝑤𝑚 + 𝛼 ⋅ 𝑟𝑒𝑔 (3)

4) Postprocessing: The model’s output is divided into two
groups: The first |ℂ| maps are character predictions, which
we denote 𝑝𝑟𝑒𝑑𝑐 , and the last output predicts the text line,
𝑝𝑟𝑒𝑑𝑙 The initial step involves the computation of a character
detection response map, defined as:

𝐷𝑒𝑡_𝑚𝑎𝑝 = max(𝑝𝑟𝑒𝑑𝑐) (4)
The operation retains the maximum predicted probability
for each spatial location across all character classes. This
response map serves as a basis for localizing characters.
We can achieve character localization simply by applying a
threshold to identify significant responses and subsequently
extracting connected components. However, this method is
not without its limitations, particularly in the detection of
smaller characters such as “1” and “I”, which often exhibit a
lower response in the detection map. To mitigate this issue,
we enhance our approach by identifying local maxima within
the response map. For each local maximum, we place a
fixed-size bounding box centered on its location. To further
refine the results, we employ a non-maximum suppression
step to eliminate redundant boxes. The value at the local
maximum is utilized as a confidence score for the presence
of a character within the box. The final character classification
for each bounding box, denoted as 𝑐𝑙𝑎𝑠𝑠𝑏𝑜𝑥, is obtained
by applying a region of interest pooling operation to the
predicted class probabilities 𝑝𝑟𝑒𝑑𝑐 , followed by an 𝑎𝑟𝑔𝑚𝑎𝑥
operation. Let 𝑅𝑏𝑜𝑥 represent the region of interest defined
by the bounding box and 𝑝𝑟𝑒𝑑𝑏𝑜𝑥 the aggregated prediction
over the region 𝑅𝑏𝑜𝑥, the character class assigned to each box
can be expressed as:

𝑝𝑟𝑒𝑑𝑏𝑜𝑥 =
∑

(𝑥,𝑦)∈𝑅𝑏𝑜𝑥

𝑝𝑟𝑒𝑑𝑐(𝑥, 𝑦) (5)

𝑐𝑙𝑎𝑠𝑠𝑏𝑜𝑥 = argmax
𝑐

(𝑝𝑟𝑒𝑑𝑏𝑜𝑥) (6)

Through this post-processing pipeline, we achieve a more
robust and accurate segmentation of characters on price tags,
which is particularly effective for small-sized text.

input ours GoogleOCR Paddle OCR Liao et al. [10] Gilbey et al [13]

Fig. 5. Qualitative comparison of our method with other approaches. Inference was conducted on the entire cropped pricetag image, akin to the first
column in Figure 3. Despite the image being captured automatically by a moving robot approximately 1m from the shelf under low-light conditions, which
challenges readability, our method consistently outperforms many other off-the-shelf OCR methods. The last row is one of the few cases our method fails
to detect the low-resolution barcode.

From the set of detected characters, we can form words
and lines by employing a spatial search akin to [4] which
has been proven to be fast and effective in [21]. However,
we leverage line and white space predictions of our model
to enhance the effectiveness of word and character-level
grouping. Firstly, we apply a threshold to the line probability
map to delineate our line predictions, which are identified as
connected components within this map. Detected characters
from the previous step are subsequently segmented based on
the connected component that appears the most within their
respective bounding boxes. Following this aggregation, the
characters are sequentially arranged from left to right within
each line. The incorporation of white space prediction in
our model provides an additional advantage, as it inherently
segments the characters into words.

IV. EXPERIMENT AND DISCUSSION

We applied our method to the automatic extraction of
information from price tags captured by our robot in a retail
environment. Our method targets 45 characters, comprising
10 Arabic numerals, 26 uppercase English letters, 8 special
characters {“Ø”, “+”, “-”, “.”, “/”, “%”, “(”, “)”}, and the
white space. We focused on three primary text fields on the
price tags: the product description, the barcode in digits,
and the internal code, as necessitated by our application.
However, the method can be easily expanded to include any
text field. To train the model, we generated a synthetic dataset
of 20,000 price tags. After testing various architectures,
we empirically choose a 6.46 million parameters U-Net
constructed from four stages of ResNet-18 [22]. The model
underwent training for 500 epochs with an incrementally
enhanced augmentation pipeline. For training and testing, our
model resizes the longer side of input images to 320 pixels.

Results from applying different methods to some price
tag images from our robot are presented in Figure 5. Qual-
itatively, while Google Cloud’s text detection 1 and Pad-
dleOCR V4 [1] accurately extract the product description
field, they frequently miss the smaller internal codes and
barcodes. Specifically, we observed that the detection stage
of PaddleOCR V4 often fails to recognize these codes. The
specialized Tesseract model by Gilbey et al. [13] for low-
resolution text and Mask TextSpotter v3 by Liao et al. [10]
generally under-perform in these price tags. We believe that
training these models with our approach on a synthetic dataset
would likely enhance their methods.

To quantitatively evaluate our detection and recognition re-
sults, we annotated at the character level a test set comprising
60 price tags, which were randomly chosen and cropped from
images captured by our robot in a real store. We assessed
performance using precision and recall metrics. For detection,
a true positive is counted if the Intersection over Union with
a ground truth box exceeds a predefined threshold. Regarding
the recognition task, we first calculated precision and recall
for each character class. Subsequently, we derived the mean
precision and recall by averaging these values across all
character classes. It is important to note that the recognition
metrics were computed exclusively on the subset of characters
that were correctly detected, i.e., the true positives. The final
results for methods that provide character-level output are
presented in Table I.

In an experimental setup employing an Intel Core i7-
7700K CPU and an NVIDIA GeForce GTX 1080 Ti GPU,
our method can process one image in 8 ms on average,

1Google Cloud Platform’s Text detection service, model released on
December 05, 2023, https://cloud.google.com/vision/docs/release-notes

TABLE I
CHARACTER DETECTION AND CLASSIFICATION QUANTITATIVE RESULTS ON

OUR TEST SET.

Method Detection Classification
Precision Recall Mean Prec. Mean Rec.

Google OCR 99.85% 84.40% 88.20% 87.64%
Tesseract [2] 88.04% 2.51% 78.55% 82.41%
Gilbey et al. [13] 61.07% 2.48% 32.91% 23.61%
Ours 98.23% 97.19% 89.99% 88.69%

with 5 ms attributed to the neural network computation and
3 ms to the post-processing. A comparison is presented in
Table II, where most of the timing data are derived from their
respective papers except PaddleOCR V4 which we measured
on our aforementioned hardware and test set. All of the GPUs
used to obtain results for this table are comparable in terms
of peak FLOPs performance.

TABLE II
COMPARISON OF MODEL INFERENCE TIME PER IMAGE, VALUES COME

FROM RESPECTIVE PAPER OR AUTHORS’ RELEASED MODELS.
* APPROXIMATION FROM DESCRIPTION OF MODEL.

Model Time (ms) GPU Params (×106)
PaddleOCR V4 [1] 327.2 RTX 1080Ti 2.6
Mask TextSpotterV3 [10] 400.0 TITAN Xp 45.5
Deep TextSpotter [11] 111.1 K80 23.9*

FOTS [12] 45.4 TITAN Xp 35.0
Ours 8.2 RTX 1080Ti 6.46

V. CONCLUSION

In this study, we detail our methodology for real-time
text detection and recognition in low-resolution images. Our
proposed method employs a streamlined neural network ar-
chitecture that is both efficient and capable of end-to-end
training, augmented by a lightweight post-processing step
to facilitate simultaneous text detection and recognition. We
have demonstrated that a synthetic dataset, with minimal
manual annotation, can yield a model that performs effec-
tively on our target application. Looking forward, we aim to
refine our model to handle text strings of varying sizes and
configurations under more complex conditions. Although our
current focus is on low-resolution images of price tags, the
methodology is designed to be adaptable to a broader range
of applications, for example enhancing document digitization
processes without the need for high-quality scanners, with
only minor adjustments.

REFERENCES

[1] Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang,
Q. Dang et al., “Pp-ocr: A practical ultra lightweight ocr system,” arXiv
preprint arXiv:2009.09941, 2020.

[2] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2, 2007, pp. 629–633.

[3] J. Huang, G. Pang, R. Kovvuri, M. Toh, K. J. Liang, P. Krishnan,
X. Yin, and T. Hassner, “A multiplexed network for end-to-end,
multilingual ocr,” in Proc. IEEE/CVF conference on computer vision
and pattern recognition, 2021, pp. 4547–4557.

[4] L. D. Huynh, Y. Xu, and T. Géraud, “Morphology-based hierarchical
representation with application to text segmentation in natural images,”
in Proc. 23st International Conference on Pattern Recognition (ICPR).
IEEE Computer Society, 2016.

[5] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“EAST: An efficient and accurate scene text detector.”

[6] S. Qin, A. Bissacco, M. Raptis, Y. Fujii, and Y. Xiao, “Towards un-
constrained end-to-end text spotting,” in Proc. IEEE/CVF international
conference on computer vision, 2019, pp. 4703–4713.

[7] S. Zhao, X. Wang, L. Zhu, and Y. Yang, “Clip4str: A simple baseline
for scene text recognition with pre-trained vision-language model,”
arXiv preprint arXiv:2305.14014, 2023.

[8] P. Wang, C. Da, and C. Yao, “Multi-granularity prediction for
scene text recognition,” in European Conference on Computer Vision.
Springer, 2022, pp. 339–355.

[9] D. Bautista and R. Atienza, “Scene text recognition with permuted au-
toregressive sequence models,” in European Conference on Computer
Vision. Springer, 2022, pp. 178–196.

[10] M. Liao, G. Pang, J. Huang, T. Hassner, and X. Bai, “Mask textspotter
v3: Segmentation proposal network for robust scene text spotting,”
in Proc. 16th European Conference on Computer Vision (ECCV).
Springer, 2020.

[11] M. Busta, L. Neumann, and J. Matas, “Deep TextSpotter: An end-
to-end trainable scene text localization and recognition framework,”
in 2017 IEEE International Conference on Computer Vision (ICCV).
IEEE, 2017, pp. 2223–2231.

[12] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “Fots:
Fast oriented text spotting with a unified network,” in Proc. IEEE
conference on computer vision and pattern recognition, 2018.

[13] J. D. Gilbey and C.-B. Schönlieb, “An end-to-end optical character
recognition approach for ultra-low-resolution printed text images,”
arXiv preprint arXiv:2105.04515, 2021.

[14] S. Park, S. Shin, B. Lee, J. Lee, J. Surh, M. Seo, and H. Lee, “Cord:
a consolidated receipt dataset for post-ocr parsing,” in Workshop on
Document Intelligence at NeurIPS 2019, 2019.

[15] L. Gao, Y. Huang, H. Déjean, J.-L. Meunier, Q. Yan, Y. Fang,
F. Kleber, and E. Lang, “Icdar 2019 competition on table detection and
recognition (ctdar),” in 2019 International Conference on Document
Analysis and Recognition (ICDAR). IEEE, 2019, pp. 1510–1515.

[16] A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie, “Coco-text:
Dataset and benchmark for text detection and recognition in natural
images,” arXiv preprint arXiv:1601.07140, 2016.

[17] A. Singh, G. Pang, M. Toh, J. Huang, W. Galuba, and T. Hassner, “Tex-
tocr: Towards large-scale end-to-end reasoning for arbitrary-shaped
scene text,” in Proc. IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 8802–8812.

[18] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text
localisation in natural images,” in Proc. IEEE conference on computer
vision and pattern recognition, 2016, pp. 2315–2324.

[19] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic
data and artificial neural networks for natural scene text recognition,”
NIPS Deep Learning Workshop, 2014.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI 2015. Springer
International Publishing, 2015, pp. 234–241.

[21] L. D. Huynh, Y. Xu, and T. Géraud, “Morphological hierarchical
image decomposition based on laplacian 0-crossings,” in Proc. 13th
International Symposium on Mathematical Morphology (ISMM), vol.
10225. Springer, 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

	Introduction
	Related works
	Scene text detection and recognition
	Existing dataset

	Methodology
	Synthetic dataset for low-resolution text
	Preparations
	Rendering and Composition

	A fast one-stage detection and recognition
	Architecture
	Multiple contextual level prediction
	Training loss
	Postprocessing

	Experiment and Discussion
	Conclusion
	References

